Câu 6: Tìm trọng lượng của 1 máy bay phản lực mà không cần dung bàn cân:
Câu 7: Tại sao lon bia thắt lại ở phía trên nắp và dưới đáy?
Câu 8: Cần bao nhiêu thời gian để dịch chuyển núi Phú Sỹ?
Câu 9: Có 3 công tắc điện ở hành lang. 1 cái trong đó dung bật đèn căn phòng ở cuối hành lang. Cửa phòng đó đóng kín tất nhiên bạn không thể nhìn thấy đèn trong phòng đang bật hay tắt. Bạn cần phải xác định cái nào trong 3 công tắc đó dùng để bật đèn phòng này. Làm cách nào bạn có thể tin chắc vào sự suy đoán của mình nếu chỉ được vào phòng đó 1 lần?
Câu 10: Có bao nhiêu trạm xăng ở nước Mỹ?
Nguồn: sưu tầm
Xem đáp án
Câu 6: Trả lời: Ta đưa máy bay xuống 1 tàu sân bay (hoặc hạ cánh xuống), hoặc có thể là 1 cái phà hoặc tàu thủy đủ lớn để có thể chứa được chiếc máy bay. Tiếp đó, trên thành tàu bạn đánh dấu mực nước. Sau đó bạn vận chuyển máy bay ra khỏi con tàu, con tàu sẽ nổi lên 1 khoảng nào đó. Bây giờ bạn lại chuyển xuống tàu 1 lượng hàng hóa có khối lượng đủ lớn, đến khi con tàu chìm xuống đúng với mức đã đánh dấu lúc trước thì bạn có thể xác định được trọng lượng của máy bay, vì trọng lượng máy bay sẽ tương đương với trọng lượng hàng hóa mà bạn vừa chuyển xuống.
Cách khác: Không cần phải chuyển khối hàng hóa có trọng lượng xác định xuống tàu, mà chỉ cần tính thể tích phần tàu nổi lên sau khi chuyển chiếc máy bay đi và nhân với trọng lượng riêng của nước thì cũng ra trọng lượng máy bay. Đòi hỏi một chút hiểu biết về Vật lý.
Câu 7: Nếu phán đoán của bạn là: như thế sẽ làm cho lon bia chắc chắn hơn, thì nói chung là đúng. Hai đầu thắt lại kiên quan đến kết cấu của tòan bộ vật thể. Lon bia, cũng như những chiếc cầu treo, là 1 cấu trúc tổng thể, nghĩa là rất khó để giải thích tại sao bộ phận cụ thể nào đó lại có cấu trúc như vậy.
Trước đây, người sản xuất không định sử dụng cấu trúc này để làm cho lon bia chắc chắn hơn. Những cái lon trước đây đã quá chắc chắn để chứa bia bên trong mà không phải nghĩ đến chuyện cải tiến. Bạn có thể hỏi điều gì về những lon bia nữa? Sự thắt lại là 1 yếu tố cho phép giảm bớt lượng nguyện liệu cần thiết. Đây có vẻ không phải là 1 phát kiến lớn, nhưng nó sẽ có ý nghĩa nếu tính đến số lượng lon bia được sản xuất và tái sản xuất hàng năm.
Đã có thời bia và các lọai đồ uống có gas được đựng trong các hộp thép rất nặng, có thiết diện gần như là hình chữ nhật. Thép phải đủ dày để có thể chịu được lực ép của khí gas. Những cái lon này được cấu tạo gồm 3 phần, tức là phần nắp và đáy được gắn vào 1 đọan ống hình trụ ở giữa nhờ máy ép.
Khi các hãng sản xuất vỏ hộp buộc phải quan tâm nhiều hơn đến việc giảm giá thành và bảo vệ môi trường, họ chuyển sang sản xuất những cái hộp mỏng bằng nhôm. Nhôm mỏng thì có độ bền kém hơn thép. Giống như vỏ trứng, những chiếc lon được cán thật mỏng mà vẫn đảm bảo chứa được lượng chất lỏng bên trong. Điều này buộc phải sử dụng đến “thủ thuật kiến trúc”, điều có thể bỏ qua khi sản xuất hộp bia bằng thép.
Phần mỏng nhất và vững nhất của lon bia là phần nắp và được gắn hơi thụt xuống. Nắp phải đủ bền vững để chịu được lực tác động khi mở lon. Vì kim loại ở phần này mỏng nên nhà sản xuất quan tâm làm sao để đường kính của cái nắp nhỏ đến mức có thể, do đó đường kính của phần này phải nhỏ hơn 1 chút so với phần thân và để nối chúng lại với nhau thì lon phải thắt vào ở phía trên (không thể làm nhỏ đường kính của toàn bộ lon, vì như vậy sẽ chứa được ít bia hơn). Vậy khi đã thắt lại ở phần trên thì cũng phải làm như thế với đáy lon để chúng có thể xếp chồng lên nhau.
Ngoài ra, còn có một nguyên nhân nữa giải thích tại sao lon bia thắt lại ở phía đáy. Phần đáy và phần thân lon được ép bằng 1 tấm nhôm mỏng để tránh các thao tác thừa khi gắn thêm phần đáy. Để việc này được dễ dàng hơn thì tốt nhất là thắt dần vào chứ không phải bẻ gập 1 góc 90 độ. Sự thắt này làm cho đáy lon hơi cong lên. Người phỏng vấn sẽ hỏi: “Vậy tại sao đáy lon Coca-Cola lại lõm?”. Câu trả lời là kim loại ở phần đáy rất mỏng, vì vậy nếu làm phẳng , đáy lon rất dễ bị biến dạng. Kim lọai cong sẽ vững chắc hơn phẳng, cũng giống như vỏ trứng lồi đều sẽ chắc hơn là 1 quả trứng hình lập phương. Độ bền vững không phụ thuộc vào sự lõm vào hay lồi ra, nhưng nếu có đáy lồi thì các lon này không thế xếp chồng lên nhau được.
Câu 8: Công ty tư vấn Booz, Allen và Hamilton có lẽ là tác giả của câu hỏi độc đáo này. Có 2 cách để tiếp cận vấn đề này. Nếu bạn lên kế họach sẽ dịch chuyển nguyên vẹn cả núi Phú Sỹ theo cách các quốc vương Châu Âu bắt các kĩ sư chuyển nguyên các tượng đài Ai Cập về thủ đô của mình – chúc may mắn. Nếu không dùng nó, bạn có thể áp dụng cách ước lượng của Fermi. Đầu tiên, bạn phải tính xem, liệu việc dịch chuyển ngọn núi sang chỗ mới phải mất bao nhiêu công đào đất thông thường. Bạn cần phải đánh giá khối lượng của núi Phú Sỹ bằng đơn vị xe tải.
Xuất phát điểm để tính toán có lẽ là hình dạng quen thuộc của núi Phú Sỹ. Đa số người Mỹ cho rằng núi Phú Sỹ có hình nón với chiều rộng đáy lớn gấp 5 lần chiều cao. Mọi người vẫn chỉ có khái niệm rất mơ hồ về chiều cao của ngọn núi. Phú Sỹ không được xếp vào nhóm những ngọn núi cao nhất thế giới (Everest cao 29000 feet hay 8848m), nhưng chắc chắn độ cao của nó khoảng vài nghìn feet. Vậy chúng ta hãy dừng lại ờ con số tròn trĩnh là 10.000 feet (đây là dự đoán tương đối đúng, theo số liệu chính xác, độ cao thật sự của núi Phú Sỹ là 12387 feet so với mặt biển. Như vậy, chúng ta có chiều cao hình nón là 10.000 feet và đường kính đáy là 50.000 feet.
Nếu núi Phú Sỹ không phải hình nón mà là hình trụ thì thể tích của nó sẽ bằng diện tích đáy nhân với chiều cao. Đây là 1 hình tròn có đường kính 50.000 feet. Hình vuông có cạnh là 50.000 feet sẽ có diện tích là 50 000x 50 000. Tức là bằng 2,5 tỷ feet vuông. Nhưng diện tích hình tròn tiệm cận trong hình vuông đó sẽ nhỏ hơn (chính xác pi/4 hoặc 79%), vào khỏang 2 tỷ feet vuông.
Nhân con số này với 10.000 feet chiều cao, chúng ta có kết quả 20.000 tỷ feet khối. Đây là thể tích hình trụ có cùng đáy và chiều cao với núi Phú Sỹ theo phép tính làm tròn của chúng ta.
Tuy nhiên, núi Phú Sỹ lại giống hình nón. Nếu bạn còn nhớ rằng thể tích hình nón bằng 1/3 thể tích hình trụ có cùng đáy và chiều cao, thì bạn sẽ có lợi thế lớn. Nhưng thậm chí nếu bạn không nhớ ra quy tắc đó, thì bạn cũng nhận thấy rằng thể tích hình nón đương nhiên nhỏ hơn thể tích hình trụ có chiều cao và đáy tương ứng. Vì chúng ta rất thích các con số tròn trĩnh nên chúng ta sẽ rút gọn 20 000 tỷ feet khối thành 10 000 tỷ feet khối, sau đó coi đây là thể tích của núi Phú Sỹ: ngọn núi lửa có thể tích 10 000 tỷ feet khối.
Thế thì cần bao nhiêu chuyến xe tải? Mỗi xe tải có thể vận chuyển được tảng đá núi lửa có kích thước 10 feet x 10 feet x 10 feet = 1000 feet khối. Vậy để vận chuyển núi Phú Sỹ cần 10 tỷ chuyến xe tải.
Bài toán này còn bỏ qua rất nhiều thông số. Chúng ta chưa biết chuyển núi Phú Sĩ đi đâu. Bạn hãy thử hỏi người phỏng vấn về thông tin này. Chúng ta cũng chẳng biết núi Phú Sỹ có bao nhiêu phần đất thổ nhưỡng có thể xúc bằng máy xúc, bao nhiêu phần đá nham thạch cứng cần phải dùng thuốc nổ để phá.
Trong trường hợp tối ưu, việc xúc đất đá và vận chuyển bằng xe tải cũng cần 1 ngày công làm việc. Nếu chúng ta tính rằng 1 chiếc xe tải tương đương với 1 ngày làm việc thì để vận chuyển núi Phú Sỹ cần 10 tỷ ngày công lao động.
Thời gian thực hiện dự án phụ thuộc vào việc có bao nhiêu người làm việc mỗi ngày. Trong trường hợp giả định chắc chắn không thể xảy ra là khối lượng này chỉ do 1 người làm (mọi người thay phiên nhau, như kiểu những người gác hải đăng thay nhau trực trong suốt nhiều thế kỷ nay), để kết thúc công việc cần 10 tỷ ngày, tức vào khoảng 30 triệu năm. (Núi Phú Sỹ có lẽ không nhiều tuổi đến thế, và khó có thể tồn tại với hình dạng bây giờ lâu được đến như vậy. Ngọn núi sẽ biến mất trước khi có ai có thể dịch chuyển nó).
Nếu chúng ta thử nghiệm phương pháp không kém phần thiếu thực tế, là huy động 6 tỷ người sống trên Trái Đất cùng tham gia ( và cung cấp cho họ đủ dụng cụ và sắp xếp sao cho mọi người không cản trở công việc của nhau), thì bạn có thể dịch chuyển núi Phú Sỹ trong 2 ngày!
Cứ cho là chính phủ Nhật quyết định dịch chuyển núi Phú Sỹ và huy động được 1 nguồn lực to lớn để thực hiện nhiệm vụ này. 10.000 nhân công, tương đương với số nhân viên trong 1 tập đoàn lớn, có thể là số lượng thích hợp. Họ cần phải thực hiện nhiệm vụ này trong 1 triệu ngày, hay khoảng 3000 năm.
Câu 9: Lời giải cho bài toán là: Gọi các công tắc là 1, 2, 3. Bật công tắc 1 và tắt các công tắc 2 và 3. Chờ 10 phút. Sau đó tắt công tắc 1 và bật công tắt 2. Lập tức đi vào phòng. Nếu bóng nào sáng thì nó ứng với công tắc 2. Bóng nào sờ vào thấy ấm ứng với công tắc 1. Bóng đèn không đỏ và lạnh ứng với công tắc 3.
Câu 10: Câu hỏi này quả là khó nhưng không phải là không thể trả lời. Đáp số của bài toán này giúp để tính số lượng trạm xăng ở Mỹ và ở những nơi khác. Trung bình mỗi người dân Mỹ có một ôtô? Không đúng. Hai người một cái? Con số này chắc gần đúng hơn.
Vậy nếu dân số Mỹ là 300 triệu, tức nước Mỹ có khoảng 150 triệu ôtô, trung bình một ôtô cần phải đổ xăng một lần trong tuần. Vì vậy, trong một tuần tất cả các trạm xăng phải phục vụ số ôtô đúng bằng tổng số xe trong nước. Số giờ trong một tuần là 24×7, nhưng không phải tất cả các trạm xăng đều làm việc 24 giờ trong tuần.
Giả sử trung bình một trạm xăng làm việc 100 giờ/tuần, nếu đổ xăng cho một xe mất 6 phút tức mỗi máy bơm ở trạm xăng trong một giờ có thể phục vụ 10 ôtô. Những trạm xăng lớn ở những chỗ đông dân có thể đặt nhiều máy bơm và ngược lại có những trạm xăng rất ít khách, giả sử trung bình mỗi trạm xăng một giờ phục vụ 10 ôtô. Vậy trung bình một tuần, một trạm phục vụ 100×10 lần, hay 1.000 ôtô. Có nghĩa số trạm xăng ở nước Mỹ bằng 150 triệu/1.000 = 150.000.